Robust Neural Control Strategies for Discrete-Time Uncertain Nonlinear Systems

نویسندگان

  • Imen Zaidi
  • Mohamed Chtourou
  • Mohamed Djemel
  • Y. Lin
  • Y. Shi
  • R. Burton
  • Z. Wang
  • D. W. C. Ho
  • Y. Liu
  • X. Liu
چکیده

In this paper, three neural control strategies are addressed to a class of single input-single output (SISO) discrete-time nonlinear systems affected by parametric variations. According to the control scheme, in a first step, a direct neural model (DNM) is developed to emulate the behavior of the system, then an inverse neural model (INM) is synthesized using specialized learning technique and cascaded to the system as a controller. The sliding mode backpropagation algorithm (SM-BP), which presents in a previous study robustness and high speed learning, is adopted for the training of the neural models. However, in the presence of strong parametric variations, the synthesized (INM) shows limitations to present satisfactory tracking performances. In fact, in order to improve the control results, two neural control strategies such as hybrid control and neuro-sliding mode control are proposed in this work. A simulation example is treated to show the effectiveness of the proposed control strategies

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Model Predictive Control for a Class of Discrete Nonlinear systems

This paper presents a robust model predictive control scheme for a class of discrete-time nonlinear systems subject to state and input constraints. Each subsystem is composed of a nominal LTI part and an additive uncertain non-linear time-varying function which satisfies a quadratic constraint. Using the dual-mode MPC stability theory, a sufficient condition is constructed for synthesizing the ...

متن کامل

Optimal discrete-time control of robot manipulators in repetitive tasks

Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...

متن کامل

A Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint

In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...

متن کامل

A new switching strategy for exponential stabilization of uncertain discrete-time switched linear systems in guaranteed cost control problem

Uncertain switched linear systems are known as an important class of control systems. Performance of these systems is affected by uncertainties and its stabilization is a main concern of recent studies. Existing work on stabilization of these systems only provides asymptotical stabilization via designing switching strategy and state-feedback controller. In this paper, a new switching strate...

متن کامل

New Robust Stability Criteria for Uncertain Neutral Time-Delay Systems With Discrete and Distributed Delays

In this study, delay-dependent robust stability problem is investigated for uncertain neutral systems with discrete and distributed delays. By constructing an augmented Lyapunov-Krasovskii functional involving triple integral terms and taking into account the relationships between the different delays, new less conservative stability and robust stability criteria are established first using the...

متن کامل

Stability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay

In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016